Apex 4B
Peak EV isolation
Apex SEC Columns
High performance isolation
- Reproducible performance < 5% CV
- Sample volume 0.5-1.0 mL
- Available with SEC and multi-mode resins
- Validated in culture, plasma, urine, serum & CSF
Apex SEC Working Principle
Size Exclusion Chromatography (SEC) is a commonly used method for extracellular vesicle (EV) and exosome isolation from biological fluids. SEC is easy, reproducible, and provides a high yield of purified EV’s that retain their functionality.
Apex MM: More than just SEC
By combining SEC with a multi-mode (MM) resin, Apex MM columns significantly enhance EV purity by removing more lipoproteins than SEC alone. By providing superior EV purity, maintaining optimal yield without introducing size biases, and preserving EV functionality, Apex MM columns significantly enhance biomarker discovery and therapeutic research applications.
Negative staining of EVs isolated using Apex 4B column from plasma
How do I apply Apex columns to my research?
Apex MM: Optimized for maximum EV purity in plasma/serum samples—optimal for unbiased assays like Mass Spec and flow cytometry.
Apex 4B: Optimized for balanced purity and yield in plasma—well-suited for targeted assays (immunoassays, imaging, Western blot, pull-downs).
Apex 6B: Optimized for maximum EV recovery—best for samples with low-contaminants like serum-free cell culture media, CSF, and urine.
Integration note: Works with the Ascent instrument for improved reproducibility and throughput.
Column Selector
Quickly identify the optimal SEC column for your workflow. This tool guides selection based on sample type and downstream analysis, helping you choose from Apex MM, Apex 4B, and Apex 6B columns. Built with expert input, the table distills technical guidance into an easy-to-use reference.
Sample Type | Analysis Type | Recommend Column |
---|---|---|
Plasma, Serum, or Cell Culture Media (with FBS/Lipoproteins) | Single Particle (e.g. NTA/Nanoflow) | Apex MM |
Targeted Assays (e.g. ELISA/WB/ONI/Leprechaun) | Apex 4B | |
Untargeted Assays (e.g. Proteomics) | Apex MM | |
Cell Culture Media (Serum-free Media) | Most applications | Apex 6B |
CSF | ||
Urine |
Technical information
The Apex size exclusion column (SEC) purifies extracellular vesicles (EVs) from biological fluids such as plasma, serum, urine, cell culture media, or cerebrospinal fluid (CSF).
Everest Biolabs Atlas EV and human serum albumin (HSA) ELISA kits can be used to optimize EV yield and purity during fraction collection.
Column volume | 8.75-9.0 mL |
Input sample volume | 0.5 - 1.0 mL |
Sample types | plasma, serum, urine, CSF, cell culture media |
Resin types | 4 % or 6 % cross linked agarose beads, cross-linked agarose plus multi-mode |
Exclusion limit | 35 nm or 20 nm |
Column reproducibility (CV) | 5% |
References
Ter-Ovanesyan, Norman, et al. Framework for rapid comparison of extracellular vesicle isolation methods. eLife 2021 doi.org/10.7554/eLife.70725
This study presents a standardized framework for assessing the efficiency and purity of different extracellular vesicle (EV) isolation techniques.
Read more
The authors utilized ultrasensitive single-molecule array (Simoa) assays to quantify three key EV transmembrane proteins-CD9, CD63, and CD81- while measuring albumin levels as a marker of free protein contamination. By applying this approach to plasma and cerebrospinal fluid (CSF), they systematically compared commonly used isolation methods, including ultracentrifugation, precipitation, and size exclusion chromatography (SEC). The results highlight SEC as a superior method for maintaining both yield and purity, particularly when optimized with custom column parameters. This study provides a valuable, reproducible strategy for improving EV isolation, aiding biomarker discovery and translational research in EV-based diagnostics.
Ter-Ovanesyan, Gilboa, et al. Improved isolation of extracellular vesicles by removal of both free proteins and lipoproteins. eLife 2023 doi.org/10.7554/eLife.86394
This study presents an advanced method for isolating extracellular vesicles (EVs) from plasma by minimizing contamination from free proteins and lipoproteins, which traditionally complicate EV purification.
Read more
The researchers developed a digital ELISA assay targeting ApoB-100, a key lipoprotein marker, and integrated it with existing assays for albumin and EV-associated tetraspanins. They systematically evaluated various size exclusion chromatography (SEC) resins and developed a novel approach, Tri-Mode Chromatography (TMC), to enhance EV purity while maintaining yield. The study highlights the advantages of TMC in reducing co-isolated contaminants and improving the reliability of EV-based biomarker discovery, particularly for proteomics applications.
Gilboa, Ter-Ovanesyan, et al. Measurement of α-synuclein as protein cargo in plasma extracellular vesicles. PNAS 2024 doi.org/10.1073/pnas.2408949121
This study addresses the challenge of measuring α-synuclein, a key protein associated with Parkinson’s disease (PD), within extracellular vesicles (EVs) isolated from plasma.
Read more
Given the difficulty of distinguishing EV-associated proteins from free plasma proteins, the researchers developed a method combining optimized size-exclusion chromatography (SEC) for EV isolation with a protease protection assay and ultrasensitive digital ELISA (Simoa) measurements. Their analysis revealed that only a small fraction of total plasma α-synuclein is contained within EVs, but its phosphorylated form (pSer129), a marker of PD pathology, is enriched within EVs compared to free plasma protein. Applying this method to patient samples, they observed subtle but significant differences in EV α-synuclein and pSer129 levels between PD, Lewy body dementia (LBD), and control groups. This work establishes a robust framework for studying EV-contained neurodegenerative biomarkers and highlights the potential of EV-based diagnostics for neurodegenerative diseases.
Ter-Ovanesyan, et al. Identification of markers for the isolation of neuron-specific extracellular vesicles. bioRxiv 2024 doi.org/10.1101/2024.04.03.587267
This study presents a systematic approach for identifying neuron-derived extracellular vesicle (EV) markers, facilitating the selective isolation of neuron-specific EVs from cerebrospinal fluid (CSF) and plasma.
Read more
Researchers developed a framework that integrates gene expression data with EV proteomics to identify transmembrane proteins unique to neurons. They optimized high-purity EV isolation by combining multiple purification techniques, including size exclusion chromatography (SEC), density gradient centrifugation (DGC), and Mixed Mode Resin (MMR) Slurry, to effectively remove free proteins and lipoprotein contaminants while preserving EV integrity. Through proteomic analysis, they identified NRXN3 as a robust neuron-specific EV marker and validated its presence using ultrasensitive immunoassays. By optimizing immuno-isolation protocols, the study provides a foundation for isolating neuron-derived EVs, enabling their use in biomarker discovery for neurological diseases. This methodology offers a scalable strategy for isolating cell type-specific EVs, expanding potential applications in liquid biopsy and neurodegenerative disease diagnostics.